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Abstract

It is well known that�r (f, t)p� t �r−1(f ′, t)p� t2�r−2(f ′′, t)p� · · · for functionsf ∈ Wrp,
1�p�∞. For general functionsf ∈ Lp, it does not hold for 0<p<1, and its inverse is not true for
anyp in general. It has been shown in the literature, however, that for certain classes of functions the
inverse is true, and the terms in the inequalities are all equivalent. Recently, Zhou and Zhou proved
the equivalence for polynomials withp =∞. Using a technique by Ditzian, Hristov and Ivanov, we
give a simpler proof to their result and extend it to theLp space for 0<p�∞. We then show its
analogues for the Ditzian–Totik modulus of smoothness�r�(f, t)p and the weighted Ditzian–Totik

modulus of smoothness�r�(f, t)w,p for polynomials with�(x)=
√

1− x2.
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1. Introduction

Throughout this paper we denote by‖ ·‖Lp[a, b] the usualLp norm (quasi-norm ifp < 1)
on the interval[a, b] for 0 < p < ∞, and the uniform norm forp = ∞. If there is no
possibility of confusion, we will use‖ · ‖p for ‖ · ‖Lp[−1,1], and‖ · ‖ for ‖ · ‖L∞[−1,1].We
define the symmetric difference operator�h by

�h(f, x) := f
(
x + h

2

)
− f

(
x − h

2

)

and�rh by

�rhf (x) := �h(�
r−1
h (f, x)) =

r∑
k=0

(−1)k
( r
k

)
f

(
x + rh

2
− kh

)
. (1.1)

Similarly we define the forward difference operator by

−→
�
r

h(f, x) :=
r∑
k=0

(−1)r+k
( r
k

)
f (x + kh) (1.2)

and the backward difference operator by

←−
�
r

h(f, x) :=
r∑
k=0

(−1)k
( r
k

)
f (x − kh). (1.3)

For anyf ∈ Lp[a, b] andt�0, let

�r (f, t)p := sup
0�h� t

‖�rhf ‖Lp[a+rh/2, b−rh/2] = sup
0�h� t

‖−→� r

hf ‖Lp[a, b−rh]

= sup
0�h� t

‖←−� r

hf ‖Lp[a+rh, b]

be the usualrth modulus of smoothness off, with �0(f, t)p understood as‖f ‖Lp[a, b]. We
will omit the subscript∞ in all moduli withp = ∞, for example�r (·, ·) := �r (·, ·)∞.

For 1�p�∞, if f ∈ Wk
p[a, b], the Sobolev Space of functionsf on [a, b] such that

f (k−1) is absolutely continuous andf (k) ∈ Lp[a, b], it is well known that

�r (f, t)p� t �r−1(f ′, t)p� · · · �
{
tk�r−k(f (k), t)p, r > k,

tr‖f (r)‖Lp[a, b], r�k. (1.4)

The inverse of (1.4) with any constants independent off andt is not true in general. One
counterexample for 1< p <∞ is given byf (x) = (x+ ε)1−1/p on [0, 1]with 0< ε�1.
It is readily to verify that�r (f, t)p�C(r) for any 0< t�1, but‖f (l)‖Lp[0, 1] → ∞ as
ε→ 0+ for anyl�1. Yu and Zhou [18] proved in 1994 part of the inverse in a special case
for splines, namely

u�m−1(s′, u)�C(m)�m(s, u), (1.5)
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wheres is any spline of orderm > 1 with equally spaced knots, andu is the mesh size. Hu
and Yu[9] proved in 1995 that for such spliness the whole inverse of (1.4) holds true for
anyt�0 not exceedingu, thus

�r (s, t)p ∼ t �r−1(s′, t)p ∼ t2�r−2(s′′, t)p . . . , 0� t�u, 1�p�∞, (1.6)

with the equivalence constants depending only on max(r,m). A few years later, Hu[6]
generalized (1.6) to splines with any (fixed) knot sequence, and further to principal shift-
invariant spaces and wavelets under certain conditions. Equivalence (1.6) for splines has
played key roles in shape-preserving spline and polynomial approximation repeatedly, (see
[7,8,10,11]), which motivates us to investigate further along the line. In fact, we believe
similar results are valid for many classes of functions, univariate and multivariate.

It seems to us the whole topic of equivalence of moduli of smoothness, in the sense of
(1.6), has been overlooked to a great extent. The first primitive result (1.5) appeared in 1994,
many years after the theory of splines with fixed knots was established. The topic had not
been explicitly discussed until 1995 [9], to our best knowledge. Some authors were close,
sometimes extremely close, to results similar to (1.6), but failed to take the last step, or
simply failed to claim them. One good example is the following theorem:

Theorem 1. Letn�1, r�1and0< p�∞.Then forTn ∈ Tn, the space of trigonometric
polynomials on[−�, �] of degree�n, we have

�r (Tn, t)p ∼ t �r−1(T ′n, t)p ∼ · · · ∼ t r‖T (r)n ‖Lp[−�,�], 0< t�n−1, (1.7)

where the equivalence constants depend only on r andq := min(1, p).

Forp = ∞, the theorem follows, as pointed out by Zhou and Zhou[19], from (1.4) and

‖T (r)n ‖L∞[−�,�]�
( n

2 sinnh

)r ‖�r2hTn‖L∞[−�,�], 0< h <
�

n
,

which has been known for long time (see[16]). As for 0< p <∞, Ditzian et al., showed
in the proof of Theorem 3.1 in [3] that for 0< h�n−1

‖�rhTn‖Lp[−�,�]�Chr‖T (r)n ‖Lp[−�,�], (1.8a)

hr‖T (r)n ‖Lp[−�,�]�21/q‖�rhTn‖Lp[−�,�], (1.8b)

where, and throughout the paper,

q := min(p, 1). (1.9)

The two inequalities immediately give�r (Tn, t)p ∼ t r‖T (r)n ‖Lp[−�,�], 0< t�n−1, from
which the other cases of the theorem follow, (by replacingr by r − j and replacingTn
by T (j)n ). 2

2 As one referee of this paper points out, the theorem also follows from Theorem 3.1 of[3] itself, rather than
from its proof, by a standard argument.
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Recently, Zhou and Zhou[19] proved the following analogue of (1.7) forPn, the space
of algebraic polynomials of degree�n (in a slightly different form).

Theorem A. LetPn ∈ Pn[−1, 1], n > r�1.Then for anyt ∈ [0, n−2]
�r (Pn, t) ∼ t �r−1(P ′n, t) ∼ · · · ∼ t r‖P (r)n ‖, 0� t�n−2, (1.10)

with the equivalence constants depending only on r.

In §3 we will generalize (1.10) toLp, 0 < p�∞, and then prove similar results for
the Ditzian–Totik (DT) modulus�r�, the DT main-part modulus, and for the weighted DT
modulus with a rather general weight functionw. A technique similar to that in [3] will
be used. The last section will be devoted to applications. But before all this, we need to
introduce in the following section some notation, preliminaries, and a few inequalities of
fundamental importance in algebraic polynomial approximation.

2. Notation and preliminaries

Throughout the paper the step-weight function is chosen as

�(x) :=
√

1− x2 (2.1)

unless otherwise mentioned. The DT modulus of smoothness3 is defined by

�r�(f, t)p := sup
0�h� t

‖�rh�f ‖Lp(Irh),

where

Irh :=
{
x ∈ [−1, 1] : −1�x − rh�(x)

2
�x + rh�(x)

2
�1

}
.

If we write Irh = [−1+ h∗2, 1− h∗2], then simple computation shows

h∗2 = 2( rh2 )
2

1+ ( rh2 )2
and

rh

2
�h∗� rh√

2
.

Sometimes�r�(f, t)p can be too sensitive to the values of the function near the endpoints,
and its exact domainIrh is difficult to calculate, thus the so-called main-part modulus of
smoothness

�r�(f, t)p := sup
0�h� t

‖�rh�f ‖Lp[−1+2r2h2, 1−2r2h2] (2.2)

3 The DT modulus of smoothness is defined in[5] for a class of step-weight functions�, not only for
√

1− x2.

Our results only involve� =
√

1− x2.
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has been introduced. It is defined on a smaller domain but preserves most of the “essential
behavior”[5, §3.3]. IfPn ∈ Pn, then by Taylor’s Theorem

�rhPn(x)=
r∑
k=0

(−1)k
( r
k

) n∑
j=0

P
(j)
n (x)

j ! [(r/2− k)h]
j

=
n∑
j=0

P
(j)
n (x)

j ! hj
r∑
k=0

(−1)k
( r
k

)
(r/2− k)j .

Denotinggj (x) := xj , we have

r∑
k=0

(−1)k
( r
k

)
(r/2− k)j = �r1 gj (0) =




0 if j − r is odd orj < r,

j !
(j − r)!�

j−r
j otherwise,

where−r/2< �j < r/2 depends only onr andj. Combining all this we have

�rhPn(x) =
∑

r� j�n
j−r even

P
(j)
n (x)

(j − r)!h
j�j−rj =

K∑
k=0

P
(r+2k)
n (x)

(2k)! hr+2k�2k
r+2k, (2.3)

whereK := �n−r2 �. Replacingh by h�(x) yields

�rh�(x)Pn(x) =
K∑
k=0

�(x)r+2kP
(r+2k)
n (x)

(2k)! hr+2k�2k
r+2k. (2.4)

Note�r+2k ∈ Pr+2k if r is even, thus

�rh�Pn =
{
Qn if r is even√

1− x2 Qn−1 if r is odd,
(2.5)

whereQm ∈ Pm,m = n− 1, n. Similar calculation shows

−→
�
r

hPn(x) =
n−r∑
k=0

P
(r+k)
n (x)

k! hr+k�kr+k, 0< �r+k < r. (2.6)

Since
←−
�
r

hf (x) = (−1)r
−→
�
r

−hf (x), we also have

←−
�
r

hPn(x) =
n−r∑
k=0

(−1)k
P
(r+k)
n (x)

k! hr+k�kr+k, 0< �r+k < r. (2.7)

In both (2.6) and (2.7),�r+k depends only onr andk.
We will extend our results to the weighted DT modulus of smoothness.
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Definition 1 (Ditzian and Totik[5, Chapter 8]). A positive weight functionw on (−1, 1)
is of classJ ∗p if

(a) w(x) = w−(
√

1+ x) w+(
√

1− x);
(b) w+(y) = y�1v+(y), w−(y) = y�2v−(y), where�i > −2/p andv± ∼ 1 on every

interval[�, √2], � > 0;
(c) for everyε > 0, yεv±(y) are increasing andy−εv±(y) are decreasing in(0, �(ε)) for

some�(ε) > 0; and
(d) for p = ∞ we may have�1 = 0 or �2 = 0 in which casev−(y) or v+(y) have to be

nondecreasing for smally.

One can see from the definition thatJ ∗p contains the Jacobi weightsw(x) =
(1+ x)�1(1− x)�2, �i > −1/p for 0 < p < ∞, and�i�0 for p = ∞; in particular,
it contains the constant functionw(x) ≡ 1. Also, ifw is inJ ∗p , or is a Jacobi weight, then so
isw�j for anyj�0. The weightedLp norm (or quasi-norm) with weight functionw ∈ J ∗p
is defined by

‖f ‖w,Lp(I ) := ‖wf ‖Lp(I ).
We will shorten‖f ‖w,Lp[−1,1] to ‖f ‖w,p. The weighted DT modulus of smoothness is
defined by

�r�(f, t)w,p := sup
0�h� t

‖w�rh�f ‖Lp[−1+2r2h2, 1−2r2h2]

+ sup
0�h�2r2t2

‖w−→� r

hf ‖Lp[−1,−1+2r2t2]

+ sup
0�h�2r2t2

‖w←−� r

hf ‖Lp[1−2r2t2, 1], (2.8)

wherew is a Jacobi weight with�i�0. The weighted DT modulus can be defined for a larger
class of weightsw, but one has to be careful. For some weight functionsw, the differences
w�rh�f , w

←−
�
r

hf or w
−→
�
r

h may not be inLp even ifwf is, (see the first half of §6.1 of
[5]). The weighted DT modulus can be defined for all weightsw ∈ Lp for polynomials
though, since polynomials are bounded on any finite interval. For anyw ∈ J ∗p the weighted
main-part modulus of smoothness is defined by

�r�(f, t)w,p := sup
0�h� t

‖w�rh�f ‖Lp[−1+2r2h2, 1−2r2h2]. (2.9)

We will prove our results on weighted DT moduli only for weights inJ ∗p if 1 �p�∞, and
for Jacobi weights with�i > −1/p if 0 < p < 1. The reason for this is we only have
Bernstein and Remez inequalities for these weights, see the conditions on (2.21) and (2.22)
later in this section.

It is well known that‖ · ‖Lp[a, b] is not a norm but a quasi-norm for 0< p < 1, that is,
in place of the triangular inequality, we only have

‖f + g‖pLp[a, b]�‖f ‖
p

Lp[a, b] + ‖g‖
p

Lp[a, b].
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Properties and inequalities depending on the triangular inequality need to be re-proved for
0 < p < 1, which often is more difficult, and some of them simply do not hold anymore.
For example, (1.4) is not true forp < 1 in general [14, Chapter 7]. We collect below some
properties of moduli that are also true for 0< p < 1 and/or for the DT moduli, the reader
is referred to [2, §12.5; 3,5], for references.

�r (f, t)p��r (f, �t)p�C�r (f, t)p, (2.10)

�r�(f, t)p��r�(f, �t)p�C�r�(f, t)p, (2.11)

�r�(f, t)p�C‖f ‖p, (2.12)

�r (f + g, t)qp��r (f, t)qp + �r (g, t)qp, (2.13)

where 0< p�∞, � > 1, q = min(1, p), andC is a constant depending only onr, q, and
also on� if applicable. The triangular inequality (2.13) also holds if�r is replaced by�r�
or �r� and/or a weightw is added. For 1�p�∞ and� > 1 we have

�r�(f, t)w,p��r�(f, �t)w,p�C���r�r�(f, t)w,p, w ∈ J ∗p, (2.14)

�r�(f, t)w,p�C‖wf ‖Lp[−1+2r2t2, 1−2r2t2], w ∈ J ∗p, (2.15)

�r�(f, t)w,p��r�(f, �t)w,p�C���r�r�(f, t)w,p,
w is a Jacobi weight with�i�0, (2.16)

whereC depends onr and the weightw. These inequalities can be deduced from their
equivalence to the respectiveK-functionals[5, Chapters 8 and 6], namely

�r�(f, t)w,p ∼ Kr,�(f, tr )w,p
:= sup

0<h� t
inf
g
{‖w(f − g)‖Lp[−1+2r2h2, 1−2r2h2]

+hr‖w�rg(r)‖Lp[−1+2r2h2, 1−2r2h2] : g(r−1) ∈ AC[−1+ 2r2h2, 1− 2r2h2]}
(2.17)

and

�r�(f, t)w,p ∼ Kr,�(f, tr )w,p
:= inf {‖w(f − g)‖p + t r‖w�rg(r)‖p : g(r−1) ∈ ACloc[−1, 1]}. (2.18)

Several types of inequalities are of fundamental importance in polynomial approximation,
namely Bernstein-, Markov- and Remez-type inequalities. The Bernstein inequality for
algebraic polynomials takes the form

‖�P ′n‖p�n‖Pn‖p, Pn ∈ Pn, 0< p�∞.
Markov’s inequality (see[1, Theorem A.4.14] for a more general version) has the form

‖P ′n‖p�Cn2‖Pn‖p, 0< p�∞, (2.19)
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whereC can be written asA1+1/p with A an absolute constant. The Remez inequality, (see
[15] for p = ∞ and [1] for 0< p <∞), is given in the following lemma:

Lemma B. For anyPn ∈ Pn, any measurableA ⊆ [−1, 1] with a Lebesgue measure
2− an−2 for some0�a�n2/2,and0< p�∞ we have

‖Pn‖p�C‖Pn‖Lp(A), (2.20)

where C depends on a andq = min(1, p).

We will also need weighted Bernstein- and Remez-type inequalities. The Bernstein
inequality we will need is

‖w�P ′n‖p�Cn‖wPn‖p, Pn ∈ Pn, (2.21)

whereC depends onw andq (againq = min(1, p) throughout the paper),w ∈ J ∗p if p�1
([5, Theorem 8.4.7]), andw is any Jacobi weight with�i > −1/p if 0 < p < 1, (a special
case of Nevai [13, Theorem 5] in which one chooses the number of nodesN = 2 and
the exponents�1 = �2 = 0). We remind the reader that Jacobi weights belong toJ ∗p if
�i > −1/p for 0 < p < ∞, and�i�0 for p = ∞. The weighted Remez inequality we
will need is

‖wPn‖p�C‖wPn‖Lp[−1+an−2, 1−an−2], n2 > a�0, Pn ∈ Pn. (2.22)

whereC depends onw, a andq, w ∈ J ∗p if p�1 [5, Theorem 8.4.8], andw is any Jacobi
weight with�i > −1/p if 0 < p < 1, which was proved by Nevai [12, Chapter 6, Theorem
14] for 0< p <∞ in a different form.

One key step in dealing with�r� is to estimate‖w�kP (k)n ‖ with k being as large asn.

We could use (2.21) withw�k−1 as the weight, but this way the constantCwould depend
on k thus also onn, which is unacceptable. For this reason, we need the following two
special versions of (2.21), whose constant is independent ofk andn. One of them is for the
non-weighted (w≡ 1) DT modulus [4, 2.3]:

‖�kP ′n‖p�Cnk ‖�k−1Pn‖p, 0< p�∞, 1�k�n, (2.23)

whereC depends only onq. The other one is for the weighted DT modulus:

‖w�kP ′n‖p�Cnk ‖w�k−1Pn‖p, 0< p�∞, 1�k�n, (2.24)

wherew ∈ J ∗p for p�1, and is any Jacobi weight with�i > −1/p for 0 < p < 1, andC
depends onw andq. This can be proved in a way almost identical to that of (2.23), see [4].
The proof will use (2.21) withw replaced by��k−2�k/2�−1, and (2.22) withw replaced
by w�k−2�k/2�. Note thatk − 2�k/2� equals either 0 or 1. This is why the constantC is
independent ofk.

Remark. It is because of the presence of� in Bernstein inequalities that our results on the
DT and weighted DT moduli are only proved for�(x) = √1− x2.



190 Y. Hu, Y. Liu / Journal of Approximation Theory 136 (2005) 182–197

3. Main results

Using a technique adopted from[3], we first generalize the result of Zhou and Zhou [19]
to theLp space. Recall from (1.9) thatq = min(p, 1) throughout this paper.

Theorem 2. LetPn ∈ Pn[−1, 1], n�1, r�1 and0< p�∞. Then

�r (Pn, t)p ∼ t �r−1(P ′n, t)p ∼ · · · ∼ t r‖P (r)n ‖p, 0� t�n−2, (3.1)

where the equivalence constants depend only on r and q.

Proof. In view of (2.10) we can assume 0�h� t� t0 := 1/(AC0rn
2), whereC0 is the

constant in Markov’s inequality (2.19), andA�1 is chosen so that
∑∞
k=1

1
(Akk!)q � 1

2. It suf-

fices to show�r (Pn, t)p ∼ t r‖P (r)n ‖p only, sincetj �r−j (P (j)n , t)p ∼ t r‖P (r)n ‖p follows

from this by replacingr by r−j and replacingPn byP (j)n . Using (2.6) and (2.19) we obtain

‖−→� r

hPn‖qLp[−1,1−rh] � ‖
−→
�
r

hPn‖qp�hqr
n−r∑
k=0

(
‖P (r+k)n ‖p
AkCk0n

2kk!

)q

� tqr‖P (r)n ‖qp
(

1+
n−r∑
k=1

1

(Akk!)q
)

� 3tqr

2
‖P (r)n ‖qp.

This shows�r (Pn, t)p�(3
2)

1/qtr‖P (r)n ‖p. Similarly, by (2.20) and (2.19)

Cq‖−→� r

t Pn‖qLp[−1,1−rt] � ‖
−→
�
r

t Pn‖qp� tqr‖P (r)n ‖qp − tqr
n−r∑
k=1

(
‖P (r+k)n ‖p
AkCk0n

2kk!

)q

� tqr‖P (r)n ‖qp
(

1−
∞∑
k=1

1

(Akk!)q
)

� t
qr

2
‖P (r)n ‖qp,

thusC�r (Pn, t)p�C‖−→� r

t Pn‖Lp[−1,1−rt]� t r‖P (r)n ‖p. �

Ditzian et al. showed in the proof of [3, Lemma 5.4] these two inequalities:

‖�rh�Pn‖Lp(Irh)�Chr‖�rP (r)n ‖p, (3.2a)

hr‖�rP (r)n ‖p�C‖�rh�Pn‖Lp(Irh), (3.2b)

which imply part of the following theorem, namely�r�(f, t)p ∼ t r‖P (r)n ‖�r,p. We will still
give a proof, somewhat simpler and more straightforward, to this part for completeness,
and also because we will need to modify it for other parts of the theorem. We point out that
inequalities in both directions are needed to establish the equivalence, since even ifp�1,
the equivalent of (1.4)

�r�(f, t)p�Ct�r−1
� (f ′, t)�,p

is not known in general for the step-weight�(x) = √1− x2 we use in this paper, although
it is known for some other step-weight functions� (see[5, Corollary 6.3.3]).
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Theorem 3. Let r�1, n�1, 0� t�n−1 and0< p�∞. Then for anyPn ∈ Pn
�r�(Pn, t)p ∼ t�r−1

� (P ′n, t)�,p ∼ t2�r−2
� (P ′′n , t)�2,p ∼ · · · ∼ t r‖P (r)n ‖�r,p, (3.3)

with the equivalence constants depending only on r and q.

Proof. In view of (2.11) and (2.16) we can assume 0� t� t0 := min
( 1
AC1r

2n
, 1

2
√
AC1 r

2n

)
,

whereC1 is the constant in (2.23), andA = 31/2q (so that
∑∞
k=1

1
A2kq = 1/2). We first

prove�r�(Pn, t)p ∼ t r‖�rP (r)n ‖p. Using (2.23) and recalling|�j | < r/2 in (2.3) and (2.4),
we have for any 0�h� t� t0

‖�r+kP (r+k)n ‖p
k! hk|�r+k|k � C1n(r + k)‖�

r+k−1P
(r+k−1)
n ‖p
k!

hk−1

AC1r2n

r|�r+k|k−1

2

= ‖�
r+k−1P

(r+k−1)
n ‖p

(k − 1)!A
(r + k)hk−1|�r+k|k−1

2kr

� ‖�
r+k−1P

(r+k−1)
n ‖p

(k − 1)!A hk−1|�r+k|k−1� · · ·

� ‖�
rP
(r)
n ‖p
Ak

,

where we have used the fact 1/k+ 1/r�2 or r + k�2rk for r, k�1. Now by (2.4)

‖�rh�Pn‖qLp(Irh) � ‖�rh�Pn‖qp�hrq
K∑
k=0

[
‖�r+2kP

(r+2k)
n ‖p

(2k)! h2k|�r+2k|2k
]q

� hrq‖�rP (r)n ‖qp
(

1+
K∑
k=1

1

A2kq

)
� 3trq

2
‖�rP (r)n ‖qp. (3.4)

Therefore

�r�(Pn, t)p�(3/2)1/qtr‖�rP (r)n ‖p. (3.5)

On the other hand, because of (2.5) we can apply to�rh�Pn either (2.20), or (2.22) with
w = �, and obtain

Cq‖�rh�Pn‖qLp(Irh) � ‖�rh�Pn‖qp�hrq‖�rP (r)n ‖qp
(

1−
K∑
k=1

1

A2kq

)

� hrq

2
‖�rP (r)n ‖qp.

Therefore

C�r�(Pn, t)p�C‖�rt�Pn‖Lp(Irt )�
t r

21/q
‖�rP (r)n ‖p, (3.6)

hence�r�(Pn, t)p ∼ t r‖�rP (r)n ‖p = t r‖P (r)n ‖�r,p.
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We now showtj�r−j� (P
(j)
n , t)�j,p ∼ t r‖P (r)n ‖�r,p for 1�j < r. Replacing in (2.4)r by

r − j andPn byP (j)n (whose degree isn− j ), and multiplying both sides bytj�(x)j give

tj�(x)j�r−jh�(x)P
(j)
n (x) = tj hr−j

K∑
k=0

�(x)r+2kP
(r+2k)
n (x)

(2k)! h2k�2k
r−j+2k,

whereK = � (n−j)−(r−j)2 � = �n−r2 �. By almost the same arguments as those used in (3.6)

Ctj�r−j� (P
(j)
n , t)�j,p � Ctj sup

0�h� t
‖�j�r−jh� P

(j)
n ‖Lp[−1+2(r−j)2h2, 1−2(r−j)2h2]

� t r

21/q
‖�rP (r)n ‖p.

For the inequality in the other direction, we estimate separately the three terms in (2.8), the
definition of the weighted DT modulus. For the first term, it is similar to (3.4) and (3.5):

tj sup
0�h� t

‖�j�r−jh� P
(j)
n ‖Lp[−1+2(r−j)2h2, 1−2(r−j)2h2]�(3/2)1/qtr‖�rP (r)n ‖p.

For the second term in the definition, we replace in (2.6)r by r−j andPn byP (j)n , multiply
both sides bytj�(x)j and obtain

tj�(x)j
−→
�
r−j
h P

(j)
n (x) = tj hr−j�(x)j

n−r∑
k=0

P
(r+k)
n (x)

k! hk�kr−j+k,

where 0< �r−j+k < r − j . Because the supremum in this term is taken over allh such
that 0�h�2(r − j)2t2, thus 0< h�1/(2AC1r

2n2). By the fact that 1/n <�(x) for
x ∈ [−1+ n−2, 1− n−2], and by (2.22) and (2.23)

tjq‖�j−→� r−j
h P

(j)
n ‖qLp[−1,−1+2(r−j)2t2]

�Cqt(2r−j)q
∥∥∥∥∥
n−r∑
k=0

�jP (r+k)n

k! hk�kr−j+k

∥∥∥∥∥
q

Lp[−1,−1+2(r−j)2t2]

� Cqtrq

n(r−j)q

∥∥∥∥∥
n−r∑
k=0

�jP (r+k)n

k! hk�kr−j+k

∥∥∥∥∥
q

Lp[−1+n−2, 1−n−2]

�Cqtrq
n−r∑
k=0


‖�rP (r+k)n ‖Lp[−1+n−2, 1−n−2]

(2AC1rn2)kk!



q

�Cqtrq
n−r∑
k=0


‖�r+kP (r+k)n ‖Lp[−1+n−2, 1−n−2]

(2AC1rn)kk!



q

�Cqtrq‖�rP (r)n ‖qp
∞∑
k=0

1

Akq
�Cqtrq‖�rP (r)n ‖qp.
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Taking the supremum of the left side of this gives

tj sup
0�h�2(r−j)2t2

‖�j−→� r−j
h P

(j)
n ‖Lp[−1,−1+2(r−j)2t2]�Ctr‖�rP (r)n ‖p.

The proof of

tj sup
0�h�2(r−j)2t2

‖�j←−� r−j
h P

(j)
n ‖Lp[1−2(r−j)2t2, 1]�Ctr‖�rP (r)n ‖p

is almost identical. Now we have showntj�r−j� (P
(j)
n , t)�j,p ∼ t r‖�rP (r)n ‖p, 0�j < r,

and finished the proof of the theorem.�

We observe that arguments almost identical to those in the second part of the above proof
(with (2.23) replaced by (2.24)) will show

tj�r−j� (P
(j)
n , t)w�j,p ∼ t r‖P (r)n ‖w�r,p, 0�j < r,

that is,

Theorem 4. Let r�1, n�1, 0� t�(Mn)−1 and0 < p�∞, and letw be inJ ∗p if p�1
and be a Jacobi weight with�i� − 1/p if 0< p < 1, then for anyPn ∈ Pn

�r�(Pn, t)w,p ∼ t�r−1
� (P ′n, t)w�,p ∼ t2�r−2

� (P ′′n , t)w�2,p

∼ · · · ∼ t r‖P (r)n ‖w�r,p, (3.7)

where M and the equivalence constants depending on r,q and the weightw. If p�1 and
w is a Jacobi weight with�i�0, then one can takeM = 1.

Remark. The reason for the constantM in the theorem is that (2.16) is only known for
p�1 and Jacobi weights with�i�0. Similarly, the reason for the constantM in Theorem 5
below is the restrictionp�1 on inequality (2.14).

The theorem is also valid if the weighted modulus�r�(Pn, t)w,p is replaced by the main-
part modulus�r�(Pn, t)w,p defined by (2.9), as stated below. We leave the proof to the
reader.

Theorem 5. Let r�1, n�1, 0� t�(Mn)−1 and0 < p�∞, and letw be inJ ∗p if p�1
and be a Jacobi weight with�i > −1/p if 0< p < 1, then for anyPn ∈ Pn

�r�(Pn, t)w,p ∼ t�r−1
� (P ′n, t)w�,p ∼ t2�r−2

� (P ′′n , t)w�2,p

∼ · · · ∼ t r‖P (r)n ‖w�r,p, (3.8)

where M and the equivalence constants depending on r, q and the weight w. Ifp�1 then
one can takeM = 1.

The following corollary says the main-part moduli are also equivalent to the “whole”
moduli�r� for polynomials.
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Corollary 6. Under the conditions of Theorem5we have

�r�(Pn, t)w,p ∼ �r�(Pn, t)w,p, 0� t�(Mn)−1. (3.9)

In particular, if w(x) ≡ 1,we have

�r�(Pn, t)p ∼ �r�(Pn, t)p, 0� t�(Mn)−1. (3.10)

4. Asymptotic behavior of best approximating polynomials

In this section, we give two examples to show the usefulness of the equivalence in
applications. In the first example,P ∗n denotes a best approximation tof in Lp from Pn, and
En(f )p := ‖f −P ∗n ‖p. Section 7.3 of[5] is devoted to asymptotic behavior of derivatives
of best approximating polynomials. The final result of the section is

Theorem C. For 0 < ��r and1�p�∞, ‖�rP ∗(r)n ‖p = O(nr−�) and�r�(f, n
−1)p =

O(n−�) are equivalent.

As an application, we prove the following generalization of TheoremC, which is more
balanced and easier to prove, and holds for 0< p < 1 as well.

Theorem 7. For0< ��r and0< p�∞,�r�(P
∗
n , n
−1)p = O(n−�)and�r�(f, n

−1)p =
O(n−�) are equivalent,where the equivalence constants depend on r andq = min(1, p),
and also on� if � is close to zero.

This theorem is a direct consequence of the next lemma, which is a modification (and
an extension to 0< p�∞) of Theorems 7.3.1 and 7.3.2 of[5]. We changed the formu-
lation of Theorem 7.3.2, but merely replacedn−r‖�rP ∗(r)n ‖p by �r�(P

∗
n , n
−1)p in The-

orem 7.3.1, which says‖�rP ∗(r)n ‖p�Cnr�r�(f, n−1)p. Without using�r�(P
∗
n , n
−1)p ∼

n−r‖�rP ∗(r)n ‖p, its proof is much more than trivial.

Lemma 8. For 0< p�∞
n−r‖�rP ∗(r)n ‖p ∼ �r�(P

∗
n , n
−1)p�C�r�(f, n

−1)p, (4.1)

�r�(f, t)p�C
[ ∞∑
k=1

�r�(P
∗
2kn, 2

−kn−1)
q
p

]1/q

, 0< t�1, n= [t−1], (4.2)

where C depends only on r and q.

Proof. (4.1) follows from a standard argument:

�r�(f − P ∗n , n−1)p�C‖f − P ∗n ‖p = CEn(f )p�C�r�(f, n
−1)p

and

�r�(P
∗
n , n
−1)

q
p��r�(f − P ∗n , n−1)

q
p + �r�(f, n

−1)
q
p.
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For (4.2) we use the idea of Sunouchi [17] as Ditzian and Totik did in [5]. For anyn�1,
let P̄n(P ∗2n) be a best approximation toP ∗2n in Lp from Pn, then

In := ‖P ∗2n − P̄n(P ∗2n)‖p = En(P ∗2n)p�C�r�(P
∗
2n, n

−1)p�C�r�(P
∗
2n, (2n)

−1)p

and

I
q
n �‖f − P̄n(P ∗2n)‖qp − ‖f − P ∗2n‖qp�En(f )qp − E2n(f )

q
p.

We can now write

En(f )
q
p =

∞∑
k=0

(
E2kn(f )

q
p − E2k+1n(f )

q
p

)
�
∞∑
k=0

I
q

2kn
�Cq

∞∑
k=1

�r�(P
∗
2kn, 2

−kn−1)
q
p.

For any 0< t�1 letn = [t−1]. Then

�r�(f, t)
q
p � Cq�r�(f, (2n)

−1)
q
p

� Cq [�r�(f − P ∗2n, (2n)−1)
q
p + �r�(P

∗
2n, (2n)

−1)
q
p]

� Cq [E2n(f )
q
p + �r�(P

∗
2n, (2n)

−1)
q
p]

� Cq
∞∑
k=1

�r�(P
∗
2kn, 2

−kn−1)
q
p. �

In our second example we let 1�p�∞,w ∈ J ∗p , P ∗n be a best weighted approximation

to f in Lp fromPn andEn(f )w,p := ‖f −P ∗n ‖w,p. We also letDrn := [−1+2r2/n2, 1−
2r2/n2] andẼn(f )w,p := ‖f − P ∗n ‖w,Lp(Drn). This example is about an analog to Theo-
remC (see §8.3 of [5]):

Theorem D. If 1�p�∞, w ∈ J ∗p and0< ��r, then

‖P ∗(r)n ‖w�r ,p�Cnr
∫ 1/n

0
�r�(f, 	)w,p	

−1d	, (4.3)

�r�(f, t)w,p�C
∞∑
k=1

2−krn−r‖P ∗(r)
2kn
‖w�r ,p, n = [t−1]. (4.4)

As a consequence,the conditions‖P ∗(r)n ‖w�r ,p = O(nr−�) and�r�(f, t)w,p = O(t�) are
equivalent.

The complex form of (4.3) comes from (8.2.1) of [5]

En(f )w,p�C
∞∑
k=0

�r�(f, 2
−kn−1)w,p ∼

∫ 1/n

0
�r�(f, 	)w,p	

−1 d	,

whose complexity is understandable since it bounds the approximation errorEn(f )w,p on
the whole interval[−1, 1]by themain-partmodulus off. This is another situation in which



196 Y. Hu, Y. Liu / Journal of Approximation Theory 136 (2005) 182–197

our newly proved equivalence�r�(P
∗
n , n
−1)w,p ∼ n−r‖P ∗(r)n ‖w�r ,p can help, bridging

[−1, 1] and its subintervalDrn and resulting in an inequality stronger than (4.3). We have

Theorem E. If 1�p�∞, w ∈ J ∗p and0< ��r, then

�r�(P
∗
n , n
−1)w,p�C�r�(f, n

−1)w,p, (4.5)

�r�(f, t)w,p�C
∞∑
k=1

�r�(P
∗
2kn, 2

−kn−1)w�r ,p, 0< t�1, n= [t−1]. (4.6)

As a consequence,the conditions�r�(P
∗
n , n
−1)w,p = O(n−�) and�r�(f, t)w,p = O(t�)

are equivalent.

The proofs of (4.5) and (4.6) are very similar to those of (4.1) and (4.2), in which one
needs the Jackson inequality onDrn ((8.2.4) in [5])

Ẽn(f )p = ‖f − P ∗n ‖w,Lp(Drn)�C�r�(f, n
−1)w,p, (4.7)

inequalities (2.14) and (2.15), and a variation of (2.13) for�r�(·, ·)w,p.

We conclude the paper by a comment on part (a) of Remark 7.3.4 of [5]. Ifn−r‖�rP ∗(r)n ‖p
is replaced by�r�(P

∗
n , n
−1)p, these interesting statements on the relationship among the

orders ofEn(f )p, �r�(f, n
−1)p andn−r‖�rP ∗(r)n ‖p (to be replaced by�r�(P

∗
n , n
−1)p) will

be more natural and balanced, thus will be even more interesting.
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